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Abstract
Purpose The aim of this study was to verify the reliability and generalizability of an automatic tool for the detection of
Alzheimer-related hypometabolic pattern based on a Support-Vector-Machine (SVM) model analyzing 18F-fluorodeoxyglucose
(FDG) PET data.
Methods The SVM model processed metabolic data from anatomical volumes of interest also considering interhemispheric
asymmetries. It was trained on a homogeneous dataset from a memory clinic center and tested on an independent multicentric
dataset drawn from the Alzheimer’s Disease Neuroimaging Initiative. Subjects were included in the study and classified based on
a diagnosis confirmed after an adequate follow-up time.
Results The accuracy of the discrimination between patients with Alzheimer Disease (AD), in either prodromal or dementia
stage, and normal aging subjects was 95.8%, after cross-validation, in the training set. The accuracy of the same model in the
testing set was 86.5%. The role of the two datasets was then reversed, and the accuracy was 89.8% in the multicentric training set
and 88.0% in the monocentric testing set. The classification rate was also evaluated in different subgroups, including non-
converter mild cognitive impairment (MCI) patients, subjects with MCI reverted to normal conditions and subjects with non-
confirmed memory concern. The percent of pattern detections increased from 77% in early prodromal AD to 91% in AD
dementia, while it was about 10% for healthy controls and non-AD patients.
Conclusions The present findings show a good level of reproducibility and generalizability of a model for detecting the
hypometabolic pattern in AD and confirm the accuracy of FDG-PET in Alzheimer disease.
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Introduction

The early diagnosis of Alzheimer Disease (AD) and the prog-
nosis of patients suffering from Mild Cognitive Impairment
(MCI) are a major challenge in clinical research for treatment
strategies and in support to clinical trials for disease-
modifying therapies. Among AD biomarkers, cerebral β-
amyloidosis is considered a strong and early pathophysiolog-
ical marker of the disease, preceding neurodegeneration and
the cognitive symptoms, and possibly remaining relatively
stable thereafter [1, 2]. Cerebral hypometabolism evaluated
by 18-F-fluorodeoxyglucose (FDG)-PET is instead consid-
ered a marker of synaptic dysfunction associated with down-
stream neurodegeneration and in turn preceding brain struc-
ture damage (disclosed by Magnetic Resonance Imaging) and
clinical symptoms [2]. In this context FDG-PET has been
indicated as a major biomarker supporting the diagnosis of
AD, assisting the prognosis of patients with MCI, whether at
risk of developing AD Dementia (ADD), and monitoring dis-
ease severity [1, 3].

Statistical tools for image analysis based on the comparison
between AD-related patterns and normal-control neuroimages
support the role of FDG-PET in the diagnostic / prognostic
process. The examination of single subject maps, expressed as
statistical scores with respect to control groups, such as the
ones provided by the SPM software (Statistical Parametric
Mapping [4]) has been shown to increase the accuracy of both
differential diagnosis and prognosis in neurodegenerative de-
mentias [5]. The contribution of SPM-maps to the diagnostic
process was significantly greater than simple visualization of
raw FDG-uptake maps [6].

Based on statistical comparison between AD patients and
healthy elderly subjects, different methods have been pro-
posed for automatic classification of FDG-PET images aimed
to support the diagnosis and to predict MCI to ADD conver-
sion. Grounded on voxel-wise image analysis and the SPM
approach, a global index of hypometabolism in AD-affected
regions was proposed in 2002 [7] and is known as PMOD
(PMOD Technologies) Alzheimer Discrimination Analysis
tool (PALZ). PMOD software is commercially available, en-
abling the computation of PALZ, with a fixed threshold, to
classify AD-related images, and has been applied to different
multi-centric data with remarkable accuracy [8]. A similar
approach, with more flexible method in defining and
weighting AD-related hypometabolic clusters of voxels, was
used to compute the Hypometabolic Convergence Index
(HCI, [9]). Alternative methods analyze cerebral metabolism
by a-priori grouping voxels into volumes of interest (VOIs)
associated with homogeneous brain structures [3]. Our group
analyzed FDG-PET data based on the partition of the whole
brain into a set of meta-VOIs, starting from the VOIs defined
by the Automated Anatomical Labeling (AAL) Atlas [10] and
merging VOIs wi th s imi la r ana tomo-func t iona l

characteristics. We applied a Support Vector Machine
(SVM) to discriminate patients with MCI due to AD (MCI-
AD) from normal aging controls in a multi-centric European
sample [11] and in a subsequent study on a local sample aimed
at distinguishing MCI patients who later converted to ADD
andMCI patients who did not convert within a follow-up time
of at least 5 years [12]. Other approaches are reported in a
review on the role of FDG-PET in the diagnosis of AD in
MCI [13] which report a considerable variability in the
resulting accuracy. The authors underline the need for further
validation and standardization in order to apply FDG-PET
analysis tools in clinical routine.

Another review examining neuroimaging based classification
of AD by different modalities [14] suggested promising perspec-
tive for diagnostic and prognostic applications but underlined
that generalizability and reproducibility of existing methods
must be demonstrated. For this aim, the growth and standardiza-
tion of extensive archives of neuroimages play an important role.
The Alzheimer’s Disease Neuroimaging Initiative (ADNI, http://
adni.loni.usc.edu/) provide a large dataset of clinical and
neuroimage data from normal aging and AD patients at
different stages of the disease and with extensive follow-up.
Analogous datasets have been recorded in Europe by the
European Alzheimer’s Disease Consortium (http://www.eadc.
info/sito/pagine/home.php) [15] and by the Network for
Standardization of Dementia Diagnosis (NEST-DD; [16]), and
other initiatives are in progress. The increasing homogeneity of
acquisition protocols and a remarkable level of test-retest reli-
ability, also with respect to cognitive and neuropsychological
measure [17], enable further developing and validation of
FDG-PET based diagnostic tools. In this context, a comparison
between different FDG-PET-based automatic methods for AD
classification was performed using different datasets and sug-
gested high potential accuracy based on the analysis of
Receiver Operating Characteristic (ROC) curves [18].

The aim of this study was to verify the reliability and gener-
alizability of the automatic tool for AD diagnosis andMCI prog-
nosis based on SVM analysis of meta-VOIs. For this purpose,
the tool we developed by analyzing a relatively homogeneous
local sample of controls and patients with MCI-AD and ADD
[12], was applied to a larger andmulticentric sample drawn from
the ADNI archive and including healthy elderly subjects, MCI-
AD patients at different stages and ADD patients.

Material and methods

Participants

Genoa dataset

The automatic tool applied in this study is an SVM classifier
processing FDG-uptake values as computed for an extensive
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set of brain volumes of interest. It was previously developed
[12, 19] and in this study was specifically fitted to discriminate
MCI-AD and ADD patients from healthy controls in a sample
largely overlapping the ones analyzed in previous studies [12,
20]. The sample included 42 healthy elderly subjects (NA,
Normal Aging), 95 MCI-AD patients, who had a baseline
FDG-PET during the MCI stage and converted to ADD dur-
ing the follow-up period, and 55 patients with mild ADD
diagnosis at baseline PET. MCI-AD patients were further di-
vided into early MCI (eMCI, 37 patients), who converted to
ADD later than 2 years since baseline FDG-PETand late MCI
(lMCI, 58 patients) who converted within the first 2 years. A
further group of 27 MCI patients, who had not converted to
ADD within 5 years after the baseline scan (ncMCI), were not
included in the training set due to its heterogeneity (presence
of very-late converters) but were considered in the testing
phase. General information regarding subject groups are re-
ported in Table 1a.

MCI and ADD patients were subjects referred to the
University neurology memory clinic of IRCCS Polyclinic

San Martino Hospital (Genoa – Italy) for a first assessment
of cognitive complaints. All patients underwent an extensive
diagnostic work-up, including a thorough clinical examina-
tion, the Mini-Mental State Examination (MMSE) for global
cognition, and a battery of neuropsychological tests, as well as
morphological (MRI) and functional (FDG-PET) neuroimag-
ing. Patients with memory impairment confirmed by a mem-
ory test but not demented were included in the MCI group
according to the Petersen’s MCI criteria [21, 22]. Patients with
significant impairment in daily activities, as assessed by ques-
tionnaires for daily living (ADL), instrumental ADL (IADL),
and by the Clinical Dementia Rating (CDR) scale, but with
mild dementia (MMSE >18), were included in the AD group,
according to NIA-AA criteria [23]. The clinical follow-up was
set at least every 6 months, including clinical examination and
formal interviews for ADL, IADL, and CDR, and MMSE
administration. Detailed neuropsychological tests were
checked during the follow-up according to the clinical needs.

The control group was composed of voluntary healthy sub-
jects approximating the patient groups as for the distribution
of age, gender and education level. They were carefully ex-
amined for medical condition and medical history and
underwent the same neuropsychological battery as patients,
FDG-PET, and MRI neuroimaging. Only subjects with
MMSE score greater than 26 and CDR of zero were included.
Clinical condition of healthy volunteers was monitored during
follow-up period by clinical examination and formal inter-
views at least yearly.

Exclusion criteria included major psychiatric or neurolog-
ical disorders, uncontrolled arterial hypertension, diabetes,
anaemia and malignancy and are detailed in a previous paper
[20] along with extensive information on the sample.

The institutional review board of the University of Genoa
approved the recording and data treatment procedures, and all
subjects gave written informed consent to undergo FDG-PET
in the framework of a long-term observational study, in accor-
dance with the Declaration of Helsinki.

This local set of data is hereinafter referred to as Genoa-set.

ADNI data set

The testing set (ADNI-set) was drawn from the ADNI archive
by selecting FDG-PET images included in the stage ADNI2 of
the ADNI project for homogeneity of associated information.
It was made up of 533 subjects including 150 cognitively
normal, 66 with Significant Memory Concerns (SMC), 218
MCI at different stages and 99 ADD.

This classification and following subgrouping were drawn
from information stored in the ADNI database and in
particular:

& a basic classification was assumed from the advanced
search tool for ADNI archive where the following classes

Table 1 General information on the subjects in each group and in the
two datasets

Group Size Males % Age mean ± std MMSE
mean ± std

A – Genoa-set

NA 42 11 26.2 68.3 ± 9.6 29.2 ± 0.9

ncMCI 27 15 55.6 71.9 ± 6.5 26.9 ± 1.4

eMCI 37 10 27.0 74.6 ± 6.9 26.3 ± 1.7

lMCI 58 21 36.2 75.6 ± 6.5 25.8 ± 1.9

ADD 55 20 36.4 73.3 ± 7.3 19.2 ± 4.1

B – ADNI-set

NA 150 65 43.3 75.3 ± 6.7 29.0 ± 1.4

SMC 66 24 36.4 72.1 ± 5.3 28.9 ± 0.9

recovMCI 33 15 45.5 68.7 ± 8.4 29.0 ± 1.3

ncMCI 87 53 60.9 70.8 ± 7.4 28.0 ± 2.2

eMCI 22 12 54.5 73.3 ± 6.2 26.7 ± 1.6

lMCI 76 40 52.6 74.4 ± 7.4 21.3 ± 5.5

ADD 99 58 58.6 74.2 ± 8.1 18.3 ± 4.1

eMCI and lMCI groups include only patients who converted to ADD
during the follow-up. SMC group include only patients who had been
diagnosed as normal in all visits

Abbreviations: ADNI-set sample of data drawn from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, Genoa-set sample re-
corded at the University neurology memory clinic of IRCCS Polyclinic
San Martino Hospital (Genoa – Italy), MMSE Mini-Mental State
Examination

Group labels: NA Normal Aging, SMC Significant Memory Concern,
recovMCI recovered MCI, i.e. patients with an initial diagnosis for mild
cognitive impairment (MCI) later on revised to normal, ncMCI not con-
verted MCI patients, MCI confirmed without dementia after 4–5 years of
follow-up, eMCI MCI patients in the early stage, lMCI MCI patients in
advanced stage, ADD patients with Alzheimer Disease Dementia
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were defined (in http://adni.loni.usc.edu/study-design/
background-rationale/)

– NA: cognitively normal subjects without signs of cogni-
tive impairment or depression;

– SMC: with subjective memory complaints not confirmed
by examination (CDR = 0) nor by informants.

– eMCI: Early MCI, with light sign of memory impairment
as evaluated using the Wechsler Memory Scale Logical
Memory II;

– lMCI: Late MCI, more severe memory impairment with-
out signs of dementia;

– ADD: meeting the NINCDS/ADRDA criteria for proba-
ble Alzheimer dementia.

& The classification was then refined by processing diagnos-
tic information associated with the sequence of follow-up
control visits of each subject. Subjects in the NA andADD
groups were included if the diagnosis was confirmed in all
available visits while SMC subjects were included if they
had been diagnosed as normal in all visits. MCI patients
were included in the study if they fell into one of the
following categories:

– recovered MCI (recovMCI) if the initial MCI diagnosis
was changed to normal (NA);

– non-converted MCI (ncMCI) if the initial MCI diagnosis
was confirmed after more than 4 years since FDG-PET
acquisition;

– Early or Late converted MCI (eMCI or lMCI) if their
diagnosis was changed to ADD as confirmed at the last
available visit.

General information about subjects in the different groups
is reported in Table 1b.

FDG-PET data acquisition and preprocessing

FDG-PET images in the Genoa-set had been acquired accord-
ing to the guidelines of the European Association of Nuclear
Medicine [24]. Approximately 45 min after the injection of
about 200 MBq of 18F-FDG, the acquisition was started by a
SIEMENSBiograph 16 PET/CTequipment and lasted 15 min
in 3-D mode. An ordered-subsets expectation-maximization
algorithm was applied to reconstruct images with a voxel size
of 1.33 × 1.33 × 2.00 mm, followed by attenuation correction
based on CTscan. Spatial normalization intoMNI space (from
the Montreal Neurological Institute) was then performed by
affine and nonlinear processing using SPM12 software
(Wellcome Department of Cognitive Neurology, London,
UK) with an FDG PET template optimized for dementia pa-
tients [25]. Spatial normalization was followed by 8-mm

smoothing with isotropic Gaussian filter. Further details on
image reconstruction can be found in [20].

From the ADNI database, we downloaded the
preprocessed images associated with the selected subjects.
Preprocessing included dynamic co-registration of images ac-
quired in consecutive time frames, averaging, reorientation
along the anterior - posterior commissure (AC-PC line) and
filtering with a scanner-specific filter function to produce im-
ages of a uniform isotropic resolution of 8 mm FWHM.

ADNI images were downloaded in Analyze format and
then processed by SPM12 software for spatial normalization
into the same MNI space used for the Genoa-set.

Activity distribution in regions of interest

For each image, from both Genoa-set and ADNI-set, mean
FDG uptake values were computed for a set of 90 anatomical
volumes of interest (VOIs, 45 homologue regions for each
hemisphere) as defined by the AAL Atlas [10]. Regional
values were normalized to the average activity of cerebellum,
as this is considered a mainly spared region in Alzheimer
physiopathology [26, 27]. The number of variables was fur-
ther reduced by merging AAL volumes with similar anatomo-
functional characteristics into a set of 29 meta-VOIs (14 in
each hemisphere plus the Vermis, as listed in Table 2) with
the aim to favor emergence of the brain structures most in-
volved in the pathological process.

Data analysis and statistics

A descriptive statistic was used to summarize sample compo-
sition as for age, gender and MMSE score; t-test, one-way
analysis of variance (ANOVA) and chi-square test were ap-
plied to explore relevant differences. The differences in mean
uptake values between each patient group and the NA control
group were explored in each dataset using the voxel-based 2-
sample t-test implemented in SPM12. Clusters of regional
differences were identified with a significance threshold set
at 0.05, corrected for multiple comparisons by family-wise
error (FWE) option, and with minimum cluster size of 100
voxels. Age and gender were considered as covariates.

A preliminary General Linear Model (GLM) for repeated
measurements was applied to meta-VOI values in each dataset
in order to estimate the effect of age and gender on the distri-
bution of FDG uptake and consequently adjust the data for
each subject. The preliminary GLM analysis was restricted to
the control group in order to estimate the physiologic effect
independently from the prevalence of the pathology, which
increases with age and is different between genders. The esti-
mated regression coefficients were then applied to all subjects
in the respective dataset and age/gender corrected data were
used in the following analysis.
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In order to discriminate patients with probable Alzheimer
Disease from control subjects (cognitively normal or non-
declining MCI), we applied an SVM model with linear kernel.
The model was trained on Genoa-set by contrasting cognitively
normal controls with AD patients (ADD and MCI-AD). The
predictors in the model were FDG uptake values in the meta-
VOIs; considering that asymmetric patterns of resting-state brain
metabolism are often indicative of pathological processes [28,
29], we also considered asymmetries as potential predictors:

asyvoi ¼
abs xvoi;right−xvoi;left

� �

xvoi;right þ xvoi;left
� �

where xvoi,right / left represents the normalized uptake value for
a meta-VOI in the right or left hemisphere and abs is the
absolute value function.

The performance of the SVM model on the Genoa-set
was evaluated using 25-fold cross-validation and a step-
wise procedure was applied to select the best set of pre-
dictors among the ones associated to the 29 meta-VOIs
and 14 asymmetries. At each step the performance of
the model was estimated by the Youden index (= sensi-
tivity + specificity −1). The global performance of the
model was described by ROC curve analysis and relevant
parameters were estimated with their 95% confidence in-
tervals (CIs) as evaluated using specific methods: the Wald

interval for sensitivity, specificity and accuracy [30], the
Simel method [31] for positive and negative likelihood
ratio, the Chen approach [32] for Youden Index and the
bootstrap method described by Qin and Hotilovac [33] for
the Area Under ROC Curve (ROC-AUC).

The SVM model fitted on the Genoa-set was then applied
to the ADNI-set in order to verify its generalization capabili-
ties. The distribution of positive and negative subjects, as
classified by the SVM model, was evaluated for each ADNI
group and an estimation of global sensitivity, specificity and
accuracy was performed considering cognitively normal sub-
jects (including NA and SMC) as opposed to MCI-AD (in-
cluding eMCI and lMCI) and ADD.

For a further evaluation of the model and its potential, the
role of the two datasets was reversed and the model was fitted
to the ADNI-set, again contrasting cognitively normal sub-
jects with MCI-AD and ADD. Accuracy parameters were
computed, and the ROC-AUCs evaluated for the two datasets
were compared by computing the z-value according to the
Hanley and McNeil method [34]. The ADNI-fitted model
was then applied to the data in the Genoa-set. As in a previous
case, the distribution of positive and negative subjects in each
group was evaluated along with a global estimation of sensi-
tivity, specificity and accuracy.

The main steps covered in data processing and statistical
analysis are summarized in Fig. 1.

Table 2 List of the 29 meta-VOIs
(14 in each hemisphere plus the
Vermis) used as input to the clas-
sification model

DEV-fit ADNI-fit meta-VOI Including

R L A Occipital Cortex Calcarine/ Lingual/ Inferior Occipital/ Middle
Occipital/ Superior Occipital Gyri

R L Basal ganglia Putamen/ Pallidum/ Caudate

R L A R L Amygdala/Insula/ Hippocampus Parahippocampal gyrus

R R L A Orbito-frontal Cortex Inferior Frontal/ Medial Frontal/ Middle
Frontal Gyri

R A Frontal Cortex Middle Frontal/ Superior Frontal/
Superior-Medial Frontal/ Superior-Orbital
Frontal/ Inferior Frontal Gyri

L A Cuneus/ Fusiform Gyrus/
Precuneus

R L R A Pre/post-central cortex Postcentral Gyrus/ Precentral Gyrus/
Supplementary Motor Area

L Parietal Lobe Inferior Parietal/ Superior Parietal Gyri

L Anterior Cingulate Gyrus

R L R L A Posterior Cingulate Gyrus

R L A L A Temporal Lobe Inferior Temporal/ Middle Temporal/ Superior
Temporal Gyri

R Temporal Pole Middle Temporal Pole/ Superior Temporal
Pole Gyri

L Thalamus

Cerebellum

Vermis

The meta-VOIs selected in the training phase by fitting on the Genoa-set and ADNI-set respectively are marked
on the first two columns with R: left hemisphere, R: right hemisphere, A: interhemispheric asymmetry
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The binary classification performed by the SVM model
was based on the application of a zero-threshold to a global
score, which was computed for each image: the distribution of
scores among groups has been examined by box-plot graphs.

In order to explore the relationship between SVM based
classification of FDG-PET data and underlying presence of
amyloid beta protein, mean cortical florbetapir uptake was
drawn from the ADNI dataset, subjects were categorized as
normal or abnormal following Landau et al. [35] and cross-
classification (SVM-based versus amyloid-based) was per-
formed for each subject group.

Data analysis was performed using Matlab 2017b
(MathWorks, Natick, MA) and its Statistics and Machine
Learning Toolbox.

Results

Population characteristics

General information about subject distribution in the two
datasets, age, gender and MMSE score, is reported in

Fig. 1 Flowchart summarizing FDG-PET data processing and statistical analysis
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Table 1. Analogous groups in the two datasets have been
coupled, for descriptive purposes, in spite of some differences
in their definition: the difference between early and late MCI-
AD is based on time to conversion in the Genoa-set but on
severity of impairment in the ADNI-set. The selection of
ncMCI is slightly different in the two datasets due to different
follow-up time. However, the partition of the sample has
strong similarities. The between group distribution of age
and gender is fairly variable in both datasets (between group
ANOVA for age: Genoa-set: F4,214 = 6.44 p < 0.0001; ADNI-
set: F6,526 = 6.88, p < 0.0001; between group chi-square for
gender: Genoa-set: χ2

4 = 7.55 p = 0.11,N.S.; ADNI-set:
χ24 = 15.31, p < 0.02). AS for the comparison of mean age
between the two datasets within each group, the difference
was not significant for all groups but NA: control subjects in
the Genoa-set were younger than in the ADNI-set (t = −5.450,
p < 0.0001). The proportion of males was higher in the ADNI-
set (with p < 0.05 for NA, eMCI and ADD groups). MMSE
was obviously different among different groups within each
dataset, while it was similar between datasets within each
group except for ncMCI, who were more impaired in
Genoa-set (t = −2.37 p < 0.025) and for lMCI, who were quite
more impaired in the ADNI-set (t = 5.7, p < 0.0001).

FDG-PET mean values

Voxel-based comparison of mean FDG-PET values showed
clusters of hypometabolism, as compared to NA, in MCI-AD
patients (both eMCI and lMCI) and in ADD, while no signif-
icant clusters of hypometabolism were found in ncMCI nor in
recovMCI and SMC subjects. The main areas of
hypometabolism, involving cingulate gyrus and temporo-
parietal lobes, are shown in Fig. 2.

GLM analysis, as applied to NA group, showed a signifi-
cant age*region interaction (Genoa-set: F28,1120 = 2.64,
p < 0.02; ADNI-set: F28,6412 = 9.56, p < 0.0001) but no gender
effect on normalized FDG-PET values in both datasets. All
data were consequently corrected for age effect and corrected
data were used in the following analysis.

Support-vector-machine classification

The SVMmodel was first trained on the Genoa-set by contrast-
ing NA group with all AD (MCI-AD and ADD), applying a
stepwise selection of meta-VOIs (or relevant asymmetries) and
measuring the discrimination performance with cross-valida-
tion. A set of 19 variables (16 meta-VOIs and three
asymmetries, as marked in Table 2) and supplementary
Figure 1 was selected, producing a high discrimination between
the two groups, with 96.0% sensitivity, 95.2% specificity
(Youden index = 0.912, ROC-AUC= 0.979; Fig. 3). Table 3a
and b report detailed classification parameters including the
percentage of positive and negative cases in each subgroup of

the Genoa-set. When this model was applied to the ADNI-set,
we obtained 83.2% sensitivity and 90.0% specificity (Youden
index = 0.738). Table 3c reports the percentage of positive and
negative cases in each subgroup of the ADNI-set.

When SVM model was trained on ADNI-set, 17 variables
were selected (11 meta-VOIS and six asymmetries, as marked
in Table 2 and supplementary Figure 1) resulting in 87.3%
sensitivity, 92.1% specificity (Youden index = .794, ROC-
AUC = 0.94). The difference between this AUC and the one
relevant to the Genoa-set was statistically significant (z = 2.52,
p < 0.01). Table 4a and b report detailed classification param-
eters including the percentage of positive and negative cases
in each subgroup of the ADNI-set. When this model was
applied to the Genoa-set, we obtained 88.1% sensitivity,
88.0% specificity (Youden index = 0.761). Table 4c reports
the percentage of positive and negative cases in each subgroup
of the Genoa-set.

The distribution of SVM scores, following the training on
the ADNI-set and Genoa-set, in the different groups of sub-
jects, is reported in Fig. 4.

Explorative analysis of amyloid data

Amyloid deposition data were available for the ADNI dataset
and, according to [35], the rate of florbetapir-positive subjects
was 30.7% in the NA group, 86.9% in ADD and 87.8 among
MCI converters (either early or late; further details in
supplementary Table 1). Among the 14 SVM-positive subjects
in the NA group (9.3%), nine were florbetapir-positive while
among the nine SVM-negative subjects in the ADD group
(9.1%), five were florbetapir-negative. Among the 16 SVM-
negative MCI converters only two were florbetapir-negative.

Discussion

Cerebral hypometabolism, as evaluated by FDG-PET, is con-
sidered a major biomarker which could support complex AD
diagnosis and prediction of the course of the disease [1, 5].
FDG-PET can be also performed for patient selection and
monitoring during clinical trials for disease-modifying thera-
pies. Of note, it can also assist in discriminating among all
main forms of dementing conditions, not only between AD
and dementias without brain amyloidosis (but dementia with
Lewy bodies), as it happens for amyloid PET tracers. For
reliability and effectiveness of FDG-PET application, the
methods for image analysis and classification have to be ver-
ified for reproducibility and generalizability in extended
datasets with heterogeneous origin [14].

The objective of the present study was to verify the gener-
alization capability of the method we developed to discrimi-
nate MCI-AD patients from normal aging or ncMCI subjects.
The application of the model, previously fitted on a selected
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monocentric sample (Genoa-set) to an independent sample
from ADNI archive (ADNI-set) showed a good accuracy
(83.2% sensitivity, 90.0% specificity) which is however lower
than the one we obtained in the original sample (96.0% sen-
sitivity, 95.2% specificity). Furthermore, when the model was
fitted to the ADNI-set the accuracy of classification in this
dataset increased (87.3% sensitivity, 92.1% specificity) and
maintained a high accuracy when applied to the Genoa-set
(88.1% sensitivity, 88.0% specificity). It’s worth noting that

for both datasets the fitting procedure was associated with
cross-validation. Such technique favors a more reliable esti-
mation of accuracy in that it enables the separation between
the training and testing stage of the method, also in case of
relatively limited sample size. In this way, accuracy estimation
is nearly independent from the characteristics of the particular
sample (the risk of overfitting is reduced) and reflects the
characteristics of the reference population. However, in case
of Genoa-set the reference population is more homogeneous
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Fig. 3 Receiver-operating-
characteristic curves obtained by
SVM classifier as applied to the
two different datasets: the Genoa-
set (recorded at the Genoa
University neurology memory
clinic) and the ADNI-set (drawn
from the Alzheimer’s Disease
Neuroimaging Initiative data-
base). The difference between the
two Areas Under the Curve
(AUC) was statistically signifi-
cant (z = 2.52, p < 0.01)

Fig. 2 Topographic representation of clusters in which mean 18-F-FDG
up-take was significantly lower in a patient group with respect to the
proper control group. Significant clusters were detected by voxel-based
2-sample t-test in SPM12, with significance threshold set at 0.05,
corrected for multiple comparisons with familywise error option and a
minimal cluster size of 100 voxels. Clusters were superimposed on the
Montreal Neurologic Institute template in coronal (left), sagittal (middle),
and transversal (right) views. The comparisons were performed within

each dataset: the Genoa-set (recorded at the Genoa University neurology
memory clinic) on the left and the ADNI-set (drawn from theAlzheimer’s
Disease Neuroimaging Initiative database) on the right. Significant dif-
ferences were found for patients with prodromal AD (eMCI and lMCI
groups) and for patients with Alzheimer Disease Dementia (ADD group).
No clusters of significant differences were found for the other patient
groups (SMC, recovMCI and ncMCI) with respect to normal aging
controls
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in that it is made up of neuroimages acquired with the same
equipment, from subjects examined by the same medical
team, while ADNI-set is representative of data from multiple
centers, with variable equipment and clinical teams. The gen-
eralization capability is clearly dependent on the level of ho-
mogeneity and standardization of protocols for data acquisi-
tion and processing. From this point of view the finding that a
model fitted on one dataset maintains a fair good accuracy
when applied to the other one is promising for further
developments.

In a review on the potential role of FDG-PET in the early
diagnosis of AD [13], the authors included 14 studies using
visual image evaluation possibly supported by quantitative
and statistical analysis and estimating accuracy by cross-

validation. The review reports a remarkable variability in the
detection of AD in MCI patients and, based on a globally
fitted ROC-curve, estimated a sensitivity of 76% at 82% spec-
ificity. The authors observed a fair homogeneity in the proto-
col followed by different studies but heterogeneity in the in-
terpretation of data and stressed the lack of an a-priori thresh-
old for the analysis of quantitative data. The present study
fulfills the need to estimate the model accuracy by a-priori
fixing the classification threshold in that the model is fully
defined by the fitting on a dataset and then tested on another
completely independent dataset, and the results are in the
highest range of the accuracy reported in the cited review.

A comparative study on different datasets [18] examined
three automatic methods, i.e.: PALZ [7], HCI [9] and

Table 3 Classification of subjects based on the original SVM model trained on the dataset recorded at the Genoa University memory clinic

A - SVM cross-validation (Genoa-set) B – SVM application (Genoa-set) C – SVM application (ADNI-set)

Estimate Conf.Int. Group Size % SVM+ % SVM- Group Size % SVM+ % SVM-

Sensitivity .960 .929–.991 NA 42 2.38 97.62 NA 150 10.00 90.00

Specificy .952 .888–1.00 SMC 66 12.12 87.88

Accuracy .958 .930–.987 recovMCI 33 6.06 93.94

Youden i. .912 .844–.981 ncMCI 27 29.63 70.37 ncMCI 87 17.24 82.76

LR+ 20.16 5.12–77.9 eMCI 37 89.19 10.81 eMCI 22 72.73 27.27

LR- .042 .019–.092 lMCI 58 89.66 10.34 lMCI 76 84.21 15.79

Roc-AUC .979 .844–.992 ADD 55 92.73 7.27 ADD 99 83.84 16.16

A: accuracy parameters estimated after cross-validation in the training set; B percent of positive and negative tests for each subject group in the training
set after a global fitting; C: percent of positive and negative tests for each subject group in the testing set following the global fitting in the training set.

Abbreviations: LR+ positive likelihood ratio, LR- negative likelihood ratio

Group labels:NANormal Aging, SMC Significant Memory Concern, recovMCI recoveredMCI, i.e., patients with an initial diagnosis for mild cognitive
impairment (MCI) later on revised to normal, ncMCI not converted MCI patients, MCI confirmed without dementia after 4–5 years of follow-up, eMCI
MCI patients in the early stage, lMCI MCI patients in advanced stage, ADD patients with Alzheimer Disease Dementia

Table 4 Classification of subjects based on the SVM model trained on the dataset drawn from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database

A - SVM cross-validation (ADNI-set) B – SVM application (ADNI-set) C – SVM application (Genoa-set)

Estimate Conf.Int. Group Size % SVM+ % SVM- Group Size % SVM+ % SVM-

Sensitivity .873 .827–.920 NA 150 9.33 90.67 NA 42 11.90 88.10

Specificy .921 .885–957 SMC 66 3.03 96.67

Accuracy .898 .869–.927 recovMCI 33 6.06 93.94

Youden i. .794 .741–.848 ncMCI 87 21.84 78.16 ncMCI 27 44.44 55.56

LR+ 11.09 7.01–17.6 eMCI 22 77.27 22.73 eMCI 37 78.38 21.62

LR- 0.137 .095–.199 lMCI 76 85.53 14.47 lMCI 58 91.38 8.62

Roc-AUC .940 .909–.959 ADD 99 90.91 9.09 ADD 55 90.91 9.09

A: accuracy parameters estimated after cross-validation in the training set; B percent of positive and negative tests for each subject group in the training
set after a global fitting; C: percent of positive and negative tests for each subject group in the testing set following the global fitting in the training set.

Abbreviations: LR+ positive likelihood ratio, LR- negative likelihood ratio

Group labels:NANormal Aging, SMC Significant Memory Concern, recovMCI recoveredMCI, i.e., patients with an initial diagnosis for mild cognitive
impairment (MCI) later on revised to normal, ncMCI not converted MCI patients, MCI confirmed without dementia after 4–5 years of follow-up, eMCI
MCI patients in the early stage, lMCI MCI patients in advanced stage; ADD: patients with Alzheimer Disease Dementia
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metaROI [3]. The authors reported high accuracy in discrim-
inating MCI-AD and mild ADD patients from a normal-aging
control group: the estimated ROC-AUC varied from 0.77 to
0.98 with variable accuracy and different ranking of the three
indexes as function of disease stage and of the considered
dataset. The results of this study are promising for the three
indexes in spite of two methodological limitations. Firstly, all
accuracy estimations were performed by independent ROC-
curve analysis for each disease-stage subgroup in each dataset,
without establishing a common threshold and, seemingly,
without cross-validation. Secondly, all patient subgroups were
compared with a unique selected control group, without an
independent estimation of specificity based on normal aging
subjects in the different datasets. These limitations can be
overcome by further studies with head-to-head comparison
of different classification methods in multicentric datasets in
order to establish generalizability of FDG-PET-based auto-
matic models.

The PALZ index, which is available as commercial soft-
ware with a predefined threshold for AD pattern detection, has
also been applied in other studies. Haense et al. [8] applied
PALZ to discriminate ADD patients from healthy controls in a
sample from the ADNI dataset, obtaining 83% sensitivity and
78% specificity, and in a sample from the NEST-DD dataset,

with a 78% sensitivity and 94% specificity. These findings
confirm the fair accuracy of this index but also its decrease
and variability when applied to a new dataset, independent
from the training sample.

The results of the present study suggest that the training on a
more extended and less homogeneous dataset (the ADNI-set)
could yield a somewhat lower accuracy on the (cross-validated)
training set, but it is associated with a lower decrease when
applied to an independent testing set (the Genoa-set). The train-
ing of a promisingmodel on an extensive dataset, collected from
different centers but with strictly standardized protocols, could
yield to accurate and generally-applicable automatic tools.

We discussed so far the accuracy parameters derived from
discriminating AD-patients from controls (AD-test). However,
the rate of subjects who are positive or negative at the AD-test
has been presented for all subgroups drawn from the two
datasets. A remarkable difference was found between eMCI
and lMCI in both datasets, in spite of the different definition
used, as it was based on time-to-conversion in the Genoa-set
and on cognitive performance in the ADNI-set. In the testing
stage, lMCI patients were classified as AD-positive at a rate (84–
91%) close to ADD patients while the rate of AD-positive
among eMCI was lower (73–78%). The higher positivity in
lMCI is in agreement with previous studies suggesting an
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Fig. 4 Boxplot depicting the distribution of SVM scores for each subject
group in the two datasets. For each column we can find the median (line
inside the box), the interval between 25° and 75° percentiles (lower and
upper side of the box) and the extension to extreme values (whiskers) and
possible outliers(‘+’). Abbreviations: ADNI-set: sample of data drawn
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
Genoa-set: sample recorded at the Genoa University neurology memory

clinic Group labels: NA: Normal Aging; SMC: Significant Memory
Concern; recovMCI: recovered MCI, i.e., patients with an initial diagno-
sis for mild cognitive impairment (MCI) later on revised to normal;
ncMCI: not converted MCI patients, MCI confirmed without dementia
after 4–5 years of follow-up; eMCI: MCI patients in the early stage;
lMCI: MCI patients in advanced stage; ADD: patients with Alzheimer
Disease Dementia
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hypometabolic pattern of lMCI closely approaching ADD [9,
36, 37] while a reduced pattern of hypometabolism can be find
in eMCI [13, 38]. The progressive worsening of metabolism
through the three groups of AD patients (eMCI, lMCI and
ADD) was highlighted by the decreasing trend of the score
drawn from the SVM model (Fig. 4). The automatic models
might be refined to fit better the early stage of the disease, also
enlarging the eMCI-AD group, which is underrepresented in
the present datasets. The analysis of a dataset with a larger
representation of eMCI-AD patients may also enable fitting
the model to the subgroups, focusing on patterns characteristic
of the early phase of the disease to increase model sensitivity
(see supplementary figure 2 and 3 for an explorative
description of different trends). Another group is made up of
MCI patients who did not convert to ADD within a long
follow-up time (at least 4 years). The variable classification of
these patients probably reflects the coexistence of non-AD pa-
tients with very late converters. On the other side, there are two
other groups in the ADNI-set: SMC, who complained of mem-
ory impairment but were scored within normal range for cog-
nition, and recovMCI, who were initially diagnosed as MCI,
but later revised to normal. It is worth noting that in both cases
they were negative to the AD-test at around 90% or even more
(Table 3). Subjective memory complaints are considered a risk
factor for future memory impairment and Alzheimer disease
[39], however, only subjects confirmed as cognitive normal
after a mean follow-up time of 1.8 years were included in the
SMC group and amyloid data indicated possible amyloidosis
for 35.9% of these patients, only slightly more than the NA
group (31.3%) and recovMCI (27.3%). Therefore, we found
a similar trend in these three groups, suggesting a limited prob-
ability of developing AD symptoms in the near future, the
higher risk probably concerning subject positive on both AD-
test and amyloidosis.

The training stage of the SVMmodel envisaged the selection
of a set of meta-VOIs suitable to reach high accuracy. The best
results were reached with a high number of meta-VOIs includ-
ing regions which are known to be hypometabolic in AD, such
as temporo-parietal lobes, amygdala-hippocampus-insula and
posterior cingulate gyrus, but also other regions, such as the
pre- post-central cortex, which are generally spared in AD
(Table 2 and supplementary figure 1). Selected regions also
extended beyond the clusters where significant differences were
found at voxel-based comparison ofmean values, as this clusters
involved a delimited set of regions in the expected brain struc-
tures (Fig. 2). Our VOI-based model was probably sensitive to
secondary hypometabolic areas and, moreover, also spared re-
gions that played a role in the building of the statistical model as
the high difference between affected and spared regions can be a
strong index of hypometabolism [12, 19]. On the same basis, the
model included asymmetry values, which often play an impor-
tant role also in the visual evaluation of abnormal metabolic
patterns, particularly in the early stages of the disease [28, 29].

The inclusion in the model of data from asymmetries and
spared regions is relevant also considering the problem of data
normalization. FDG-PET regional values are normalized to re-
duce the effect of technical factors and inter-subject variability,
looking for reference values minimally affected by pathological
processes [40]. In this study, the average activity of the cerebel-
lum was preferred to the cerebral global mean which can be
significantly reduced for the contribution of affected regions
[27]. Some preliminary tests on data used in the present study
showed slightly higher sensitivity in discriminating AD from
NA when cerebellar normalization was used with respect to
global mean normalization. However, cerebellar metabolism
may in turn be mildly affected by the presence of amyloid
plaques [41, 42] and by cross diaschisis [43] and the inclusion
in the model of other spared regions may counteract this bias.
On the other hand, this study did not consider the problem of
differential diagnosis with respect to other neurodegenerative
diseases, which may give rise to cognitive impairment and
progress to other forms of dementia such as fronto-temporal
dementia (FTD), Parkinson disease or dementia with Lewy
bodies. In order to support differential diagnosis, further studies
must be developed to fit multi-class models to an extended
FDG-PET dataset including patients suffering from different
diseases. With this aim, the normalization criterion should be
revised because cerebellar metabolism, by cross diaschisis, is
more severely affected in other conditions such as FTD [44]
and cerebellar normalization may deeply bias metabolic pat-
terns. In the same condition, the inclusion of asymmetries and
the combination of affected and unaffected regions may be
even more important for the classification.

The present study, focused on an SVM-model based on
FDG-PET data, was integrated with the explorative analysis
of amyloid-deposition data. The analysis only involved the
ADNI-set because amyloidosis biomarkers were available
for few subjects in the GENOA-set. In fact the baseline
work-up in this case series was collected several years ago
(providing data with a long follow-up time), included FDG-
PET, MRI and neuropsychology and was followed by repeat-
ed periodic clinical and neuropsychological examinations, but
only the most recently enrolled patients underwent baseline
amyloidosis biomarkers recording. Considering the ADNI-
set, the rate of florbetapir positivity showed a pattern similar
to the one reported in [35], around 30% positivity for NA,
SMC and recovMCI patients, which can be viewed as limited
specificity in the diagnostic process. On the other hand, the
high rate of positivity (88%) in patients with AD diagnosis
was close to the one found for the FDG-PET-based SVM
model. The cross-analysis of FDG-PET based and amyloid-
based classification showed that most of SVM-positive NA
subjects were indeed florbetapir-positive, which could suggest
a considerable risk of developing AD symptoms in the future.
Analogously, about a half of SVM-negative subjects in the
ADD group were also florbetapir-negative, which could
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suggest the presence of some doubtful diagnoses. On the other
hand, the majority of SVM-negative patients in the MCI
groups were florbetapir-positive, which could be a limitation
of the SVM-model but also suggests a possible delay in the
transition from amyloidosis to neurodegeneration [45].

Conclusion

This study shows that a multivariate SVM model analyzing
meta-VOI based FDG-PET data can reach high accuracy in
classifying AD patients in both MCI and dementia stage and
performs with generalization capability when applied to un-
known independent data. Further training on suitable datasets
can improve the sensitivity in the early stage of the disease.
The automatic analysis of FDG-PET images may be integrat-
ed in a diagnostic process, which can take advantage of the
analysis of multimodal data.
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